Last modified 3 years ago
Last modified on 08/10/15 11:00:22
Description
The keyword $DENSITY enables the definition of a fluid density model.
Parameters
The first parameter (int) indicates the density model type.
Density Models:
- constant_density
- rho(p) = rho_0*(1+beta_p*(p-p_0))
- rho(C) = rho_0*(1+beta_C*(C-C_0))
- rho(T) = rho_0*(1+beta_T*(T-T_0))
- rho(C,T) = rho_0*(1+beta_C*(C-C_0)+beta_T*(T-T_0))
- rho(p,T) = rho_0*(1+beta_p*(p-p_0)+beta_T*(T-T_0))
- rho(p,p_v,T) no input data required
- rho(p,T,C)
- Molar mass
- read density from a rho-P-T table
- Peng-Robinson Equation of State
- Redlich-Kwong Equation of State
- Fundamental equation
- Extended ideal gas equation based on super compressibility factor
- calculated node densities from the phase transition model
In Example 1, the density model is set to 1, i.e. the density is constant. The second value (double) gives the water density (10°C) in kg/m3.
Examples
1
#FLUID_PROPERTIES $FLUID_TYPE LIQUID $DENSITY 1 0.9997026e+03 $VISCOSITY 1 1.308e-003 #STOP