Last modified 3 years ago
Last modified on 08/04/15 10:34:53
Description
The $DIFFUSION keyword specifies the diffusion model and the corresponding diffusion model value used for the diffusion coefficient.
Parameters
The parameter is defined in subsequent line below the keyword. The first parameter indicates a diffusion model type and the second parameter gives the diffusion coefficient value [m2s-1].
$DIFFUSION | keyword |
int double | diffusion-model-type, diffusion coefficient value |
Diffusion-model-type
- -1: No diffusion specified
- 0: User-defined function by #CURVE (Not implemented)
- 1: Constant diffusion coefficient (unit: m2s-1)
- 10: Temperature dependence Yaws
Fick’s law in the porous media (effective diffusion coefficient):
\[ D^* = \omega \cdot D_d \]
where omega is a coefficient that is related to the tortuosity (Empirical coefficient, lab: 0.5~0.01)
Other Diffusion model types
2: * Variabler Diffusionswert (Zeitabhaengig). Abhaegigkeit ueber Kurve* 3: * Worch, 1993* m = k[0] Daq = 3.595e-7*T / eta / pow(m,0.53)*1.e-4 4: * Hayduk und Laudie, 1974* V = k[0] Daq = 13.26e-5 / pow(eta, 1.14) / pow(V, 0.589) * 1.e-4 5: * Wilke und Chang, 1955* Msol = k[0] Vs = k[0] Daq = 7.4e-8* T* sqrt(msol) / eta / pow(Vs, 0.6) * 1.e-4 6: * Stokes-Einstein (Fuer Partikel/Makromolekuele)* Rm = k[0] Kb = 1.38066e-23 /* Boltzmann Konstante [J/K] Daq = Kb * T / 6. /PI / Rm / eta*1.e-4 7: * FSG-Method, Lyman et al., 1990* M = k[0] V = k[1] Vg = 20.1 /* Molares Volumen von Luft [cm3/mol] // Dg = (0.001 * pow(T, 1.75) * sqrt(1. / mg + 1. / m)) / (p*pow(pow(Vg, 1. / 3.), 2.)) * 1.e-4 8: ((GEM_REACT)) Archie’s law {{{ #!latex D_e = D_{aq} \cdot \epsilon^m D_e ... effective diffusion coefficient ε ... transport porosity m ... empirical constant depending on the type of porous medium }}} Only coupling to Richards flow implemented so far 9: ((GEM_REACT)) De (effective diffusion coefficient) is calculated independently from element porosity. We use node porosity values with Archie’s law and do a harmonic average of the node diffusion coefficient. As Dp is part of the diffusion tensor, we modify Dp -> Dp=Dp0*poro^(m-1)* 10: Yaw’s empirical diffusion model Transport properties of chemicals and hydrocarbons: viscosity, thermal conductivity, and diffusivity of Cl to Cl 00 organics and Ac to Zr inorganic/Carl L. Yaws.